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Abstract—Though the cause of cystic fibrosis (CF) pathology is understood to be the mutation of the CFTR protein,
it has been difficult to trace the exact mechanisms by which the pathology arises and progresses from the mutation.
Recent research findings have noted that the CFTR channel is not only permeant to chloride anions, but other, larger
organic anions, including reduced glutathione (GSH). This explains the longstanding finding of extracellular GSH deficit
and dramatically reduced extracellular GSH:GSSG (glutathione disulfide) ratio found to be chronic and progressive in
CF patients. Given the vital role of GSH as an antioxidant, a mucolytic, and a regulator of inflammation, immune
response, and cell viability via its redox status in the human body, it is reasonable to hypothesize that this condition plays
some role in the pathogenesis of CF. This hypothesis is advanced by comparing the literature on pathological
phenomena associated with GSH deficiency to the literature documenting CF pathology, with striking similarities noted.
Several puzzling hallmarks of CF pathology, including reduced exhaled NO, exaggerated inflammation with decreased
immunocompetence, increased mucus viscoelasticity, and lack of appropriate apoptosis by infected epithelial cells, are
better understood when abnormal GSH transport from epithelia (those without anion channels redundant to the CFTR
at the apical surface) is added as an additional explanatory factor. Such epithelia should have normal levels of total
glutathione (though perhaps with diminished GSH:GSSG ratio in the cytosol), but impaired GSH transport due to CFTR
mutation should lead to progressive extracellular deficit of both total glutathione and GSH, and, hypothetically,
GSH:GSSG ratio alteration or even total glutathione deficit in cells with redundant anion channels, such as leukocytes,
lymphocytes, erythrocytes, and hepatocytes. Therapeutic implications, including alternative methods of GSH augmen-
tation, are discussed. © 2001 Elsevier Science Inc.
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INTRODUCTION

Cystic fibrosis (CF) is a genetic disease afflicting nearly
30,000 persons in the United States and Canada, and an
estimated 250,000 persons worldwide. The mutated gene
is recessive, and there are hundreds of genetic mutations
that can produce cystic fibrosis. The mutations all cause
the ion channel created by the cystic fibrosis transmem-
brane conductance regulator (CFTR) protein to be either
defective or absent altogether. More specifically, this
protein creates an organic anion efflux channel in the cell

membrane, permeant to chloride and other larger organic
anions, such as reduced glutathione [1,2]. CF patients
typically die of respiratory failure due to profound lung
injury secondary to chronic inflammation and chronic
pathogen colonization of the lung, although several exo-
crine organs are negatively affected, including the pan-
creas and liver. In countries where these patients receive
optimal care, average survival has risen to approximately
30 years.

Though the cause of CF pathology is understood to be
the mutation of the CFTR protein, it has been difficult to
trace the exact mechanisms by which the pathology
arises and progresses from the mutation. For example,
even when not facing pathogen challenge, inflammation
is present in the youngest infants [3–6], and inflamma-

Address correspondence to: Professor Valerie M. Hudson, David M.
Kennedy Center for International and Area Studies, 212 HRCB,
Brigham Young University, Provo, UT 84602, USA; Tel: (801) 378-
5355; Fax: (801) 378-8748; E-Mail: valerie_hudson@byu.edu.

Free Radical Biology & Medicine, Vol. 30, No. 12, pp. 1440–1461, 2001
Copyright © 2001 Elsevier Science Inc.
Printed in the USA. All rights reserved

0891-5849/01/$–see front matter

PII S0891-5849(01)00530-5

1440



tory mediators and cytokine markers appear to be con-
stitutively elevated in CF patients [7–12]. When patho-
gens do begin to challenge the system, neutrophil
infiltration in CF is especially high in response [13], and
very young CF patients have been found to clear bacteria
even without antibiotic intervention [14]. Over time,
however, that capability decreases, and despite continu-
ing high neutrophil infiltration rates, bacteria are no
longer cleared. By age 2, most CF patients are consis-
tently culturing at least one pathogen [15,16]. Indeed,
lung cells expressing the mutant CFTR fail to undergo
apoptosis in response to infection withPseudomonas
aeruginosa[17]. In many pulmonary diseases involving
inflammation due to pathogen challenge, exhaled NO of
patients is elevated [18–22]. In CF, exhaled NO is not
elevated [19,22–27]. In pulmonary conditions involving
high oxidant stress, extracellular levels of reduced glu-
tathione (GSH) increase [28–30]. In CF, a systemic
deficiency of extracellular GSH develops and progresses
over time [31–33].

How are all of these puzzling phenomena related to a
defective CFTR channel? We believe that abnormal
transport of GSH caused by CFTR mutation, recently
demonstrated by two research teams [1,2], is signifi-
cantly related to the pathological puzzles mentioned
above, as well as other aspects of cystic fibrosis disease.
As will be detailed in a later section, CFTR mutation
results in significantly diminished efflux of cellularly
produced GSH into the extracellular milieu from certain
cells without redundant channels to effect such efflux.
The focus of this article will be on the role of this
phenomenon in the pathogenesis of cystic fibrosis. We
hypothesize that this transport abnormality will result in
(i) normal levels of total glutathione in epithelia (those
without anion channels redundant to the CFTR at the
apical surface; however, cytosolic GSH:GSSG ratio may
be diminished in these cells), (ii) a chronic and progres-
sive extracellular deficit of GSH, and (iii) a similar
deficit in cells with redundant anion channels, such as
leukocytes, lymphocytes, erythrocytes, and hepatocytes.
But perhaps most importantly in a theoretical sense, this
transport abnormality is directly caused by the CFTR
mutation, providing at least part of the missing linkage
between the genetics and the pathology of CF. To ex-
plain this hypothesis, we must first step back and under-
stand the importance of GSH in lung defense.

GSH AND LUNG DEFENSE

Reduced glutathione (GSH) is a ubiquitous tripeptide
produced by plants and animals alike from the amino
acids glutamine, glycine, and cysteine (with cysteine
being the rate-limiting constituent). Its sulfur-hydrogen,
or thiol, group is a potent reducing agent, and GSH can

be considered the one of the body’s most important
water-soluble antioxidants.

Antioxidant defenses in humans are comprised of
both enzymatic and nonenzymatic defenses; some de-
fenses operate intracellularly and others have additional
extracellular functions. The antioxidant enzymes are glu-
tathione peroxidase, superoxide dismutase, and catalase.
There are two types of nonenzymatic antioxidants, the
water-soluble and the fat-soluble. The water-soluble an-
tioxidants include reduced glutathione and ascorbic acid;
the fat-soluble includea-tocopherol and the carotenoids.
The enzymatic antioxidants are lodged within the cellu-
lar membranes (though there is a free plasma glutathione
peroxidase [34]); in contrast the water-soluble antioxi-
dants (as free molecules) are present in the cytosol of the
cells, though some, including GSH, are also present in
the extracellular environment. The fat-soluble antioxi-
dants are found within the lipid membranes. Each anti-
oxidant defense system protects the cells from oxidative
damage in its own sphere of action, and a deficiency in
any category puts the cell at risk for oxidative damage. It
should be noted that GSH is a precursor for the function
of glutathione peroxidase, and that GSH, ascorbate, and
a-tocopherol exist in an interdependent system, where
normal levels of each in reduced form are dependent on
normal levels of the others. As noted, in addition to its
cellular functions, GSH is also present in extracellular
epithelial fluids, such as the epithelial lining fluid (ELF)
of the lung, blood plasma, semen, saliva, and so forth,
where antioxidant action is similarly useful. In the ex-
tracellular milieu, GSH is capable of direct reduction
without glutathione peroxidase. A generalized diagram
of normal GSH system function and transport in a
non-CF lung epithelium cell is given in Fig. 1.

GSH provides powerful antioxidant protection to
body systems heavily exposed to reactive oxygen species
(ROS), such as the lung [35,36]. For example, the normal
level of extracellular GSH in the lung epithelial lining
fluid (ELF) is 140 times the normal level of extracellular
GSH in blood plasma, and it is probable that the lung,
under oxidative stress, becomes a net importer of circu-
lating GSH [28]. Glutathione deficiency in the ELF has
been associated not only with cystic fibrosis, but also
with such pulmonary diseases as acute respiratory dis-
tress syndrome (ARDS) [37], chronic obstructive pulmo-
nary disease (COPD) [35], idiopathic interstitial pneu-
monia (IIP) [38], idiopathic pulmonary fibrosis (IPF—of
nonsmokers) [39], idiopathic respiratory distress syn-
drome (IRDS) [40], and diffuse fibrosing alveolitis
(DFA) [41]. A deficiency has also been found in the
lungs of HIV-positive patients [42,43]. However, it
would be wrong to view GSH only or even most impor-
tantly in terms of its antioxidant properties when consid-
ering its importance in lung defense.
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A second property of reduced glutathione that should
not be overlooked is its promotion of mucolysis. Because
of its chemistry, GSH, like N-acetylcysteine (NAC), is
able to cleave disulfide bonds, which serves to reduce the
viscoelasticity of mucus when the glutathione system is
functioning normally [44,45]. Furthermore, reduced glu-
tathione plays a role in establishing the volume of peri-
ciliary fluid, and also affects mucus hydration through its
indirect relationship with epithelial sodium channels
(ENaC), topics we will explore in a later section.

A third property of reduced glutathione is to regulate
inflammation and immune response. This regulation is
carried out in a number of ways, which will be discussed
below. Generally speaking, however, the main mecha-
nism of regulation is by redox potential. Since GSH is
synthesized by virtually every cell in the body, a redox
equilibrium is established within each of these cells, and
the efflux of GSH therefrom establishes an extracellular
redox equilibrium as well. Both intracellular and extra-
cellular redox equilibria vary: extracellularly, the equi-
librium varies by bodily system, as noted above; and
intracellularly, the equilibrium varies by cell type. For
example, the intracellular GSH level of monocytes is
three times that of neutrophils [46]. The redox potential,
expressed by the ratio GSH:GSSG (GSSG being gluta-
thione disulfide, the product when reduced glutathione is

oxidized), influences many sensitive cellular systems and
functions. Indeed, as we shall see, inflammation, immune
response, and cell viability, among other things, are
intimately tied to this ratio. If, as we will hypothesize in
a later section, CF leukocytes and lymphocytes (along
with other cells possessing anion channels redundant to
the CFTR) are prone to chronic alteration of the GSH:
GSSG ratio, immune response will be profoundly af-
fected.

The clearest way to demonstrate the importance of a
properly functioning GSH system is to detail what sci-
entific research tells us about phenomena associated with
GSH deficiency.

ASSOCIATIONS OF GSH DEFICIENCY

Given that GSH is one of the organic anions whose
efflux depends on a functioning CFTR channel (or a
channel redundant to the CFTR), we would expect CF
persons to manifest a progressive systemic extracellular
deficiency of GSH, with profound deficits in areas
heavily exposed to ROS, such as the lung. This is, in fact,
the case, as we will detail in a later section. We would
also hypothesize that cells with anion channels redundant
to the CFTR, such as leukocytes, lymphocytes, erythro-
cytes, and heptatocytes, may also develop chronic intra-

Fig. 1. Normal GSH system in non-RACP cell.
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cellular GSH deficiency, or, at a minimum, chronically
diminished GSH:GSSG ratio. (Let us call these cells
RACP cells: cells with a Redundant Anion Channel
Present.) Parallels can be drawn between the observed
pathogenesis of CF and other pathological conditions
associated with GSH deficiency [47,48]. The comparison
is not perfect, because CF epithelia without redundant
anion channels to the CFTR should display normal levels
of total glutathione: indeed, it should prove difficult to
lower that total level because of the missing or defective
CFTR channel, even under natural conditions favoring
such depletion, such as programmed cell death. (How-
ever, it is unclear whether there might also develop an
alteration in GSH:GSSG ratio in such non-RACP cells,
as well.) But in the extracellular compartment, and in
cells with such redundant channels—especially immune
system cells—the comparison should hold. We will dis-
cuss three main categories of known associations of GSH
deficiency: impaired antioxidant capability, decreased
mucolysis, and abnormal immune response, including
decreased nitric oxide production and availability.

Impaired antioxidant capability

When a key antioxidant such as GSH is deficient in
the extracellular compartment and in RACP cells, direct
damage from oxidants increases greatly. In addition,
glutathione deficiency in leukocytes (a type of RACP
cell) has been shown to cause increased release of hy-
drogen peroxide [49]. Oxidant damage to lung epithelial
cells from a diminished extracellular antioxidant screen
reduces lung function, causing fibrosis and permitting
greater adhesion of bacteria [35,36,50–52]. When GSH
is deficient, other antioxidants may be consumed in high-
er-than-normal amounts to handle the increased oxidant
burden. Thus, GSH deficiency is often accompanied by
lower levels of a-tocopherol and ascorbate, and de-
creased activity of glutathione peroxidase, catalase, and
superoxide dismutase, all of which are reversible when
GSH level is normalized [53]. New research also points
to the direct role of GSH in neutralizing HOCl, one of the
deadliest oxidants to be found in the respiratory milieu,
with the reaction being:

2GSH1 HOCl3 GSSG1 H2O 1 HCl@54# (1)

GSH deficiency also causes oxidant damage to the liver
[55–65] and pancreas [66–68], resulting in impaired
function of these organs, including reduced bile flow
[57,62,64,69], and is associated with the onset of diabe-
tes mellitus [70–76], rheumatoid arthritis [77], periph-
eral nerve damage [78], and myocardial injury [79]. GSH
deficiency results in intestinal mucosal injury and
chronic inflammation of the gut [80–85], decreased ab-

sorption of nutrients such as calcium [86], and general
cachexia and growth retardation [87–90]. GSH defi-
ciency also causes greater lipid peroxidation, which, in
turn, causes cell damage [53,91–96]. As peroxidation of
arachidonic acid yields especially damaging metabolites,
it is noteworthy that CFTR knockout mice have been
found to have 3-fold more arachidonic acid (AA) and
3-fold less docosahexaenoic acid (DHA) in the cell
membrane than normal [97], and that the cytotoxicity of
arachidonic acid is enhanced by GSH depletion [98]. The
metabolism of arachidonic acid also entails the produc-
tion of radicals by virtue of the lipooxygenase and cy-
clooxygenase pathways, further increasing oxidant bur-
den. For example, 8-isoprostane in breath condensate of
CF persons is elevated 3-fold above normal controls
[99].)

Loss of GSH antioxidant capability in the extracellu-
lar milieu has secondary effects, as well. One such effect
is oxidant-derived inactivation of the anti-protease sys-
tem [100–102]. Such inactivation produces its own cas-
cade of harmful effects due to unbound neutrophil elas-
tase (NE). In the lung, these include, as Barbero notes in
a review of the scientific literature, “cleavage of fi-
bronectin, lung elastin, immunoglobulins and immune
complexes, complement receptors in neutrophils, and
other receptors on T-cells and B-cells. Furthermore, NE
inhibits ciliary beating and stimulates mucus production
from goblet cells and facilitates P. aeruginosa adherence.
Finally, by cleaving receptors for interleukin (IL)-1 and
IL-2 or the T-cell antigen receptor, it may hypothetically
inhibit message transmission and immune recognition.
Thus, besides destruction, [free NE] may lead to ac-
quired immune suppression” [103]. GSH depletion has
also been linked to increased levels of collagenase [104].

Other secondary effects of the loss of GSH antioxi-
dant protection in the extracellular milieu include degra-
dation of lung surfactant, both via oxidant damage and
through the inability of the body to maintain appropriate
levels of phosphatidycholine under conditions of GSH
deficiency [105–107]. This in turn may be related to the
linkage between GSH depletion and reduced lung sur-
face tension [40]. Though it is intriguing to note that
GSH depletion also leads to free radical-induced respi-
ratory muscle fatigue, which contributes to respiratory
failure in patients with lung disease [108], and that more
generalized skeletal muscle fatigue also results from
GSH depletion [109], because MRP in muscle cells is
usually not expressed at the membrane [110], it is not
clear whether these findings would be pertinent to the
case of CF or not. These cells should have normal levels
of total glutathione, but it is possible that a diminished
GSH:GSSG ratio in the cytosol of such cells might
develop over time due to ever-increasing oxidant burden,
leading to fatigue. However, it is relevant to the CF case
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to note that GSH depletion, by increasing airway inflam-
mation, has been hypothesized to lead to the develop-
ment of asthma [111]. Furthermore, when GSH in the
ELF is deficient, the body decreases enzymatic activity
transforming GSSG back into GSH, and instead further
oxidizes GSSG into chloramines, long-lived oxidants
capable of profound injury to the lung [112,113]. (For
illustration, chloramines are the agent of lung damage
when ammonia and bleach are mixed.) Oxidation prod-
ucts also serve to inhibit the enzymatic activities of
glutathione reductase, essential in recycling of cellular
GSSG into GSH [114,115], and we would expect this
inhibition in RACP cells where the cellular redox state
has been chronically shifted in the direction of oxidation
due to GSH depletion. Oxidation appears to decrease
g-glutamylcysteine transferase (g-GCT) activity, as well
[116], and this would affect cellular conjugation of cy-
totoxic substances. These secondary effects, by damag-
ing the integrity of lung tissue, increasing epithelial
permeability, and further disrupting the GSH antioxidant
system, allow for increased adhesion of pathogens [117].
Regulation of neutrophil adhesion is also affected by
GSH depletion [118]. GSH depletion also causes oxida-
tion of protein thiols, protein denaturation and aggrega-
tion, increases in insoluble proteins [119], all of which
can serve to initiate stress responses in cells, such as
induction of heat shock protein 70 (HSP70) [120,121]
and stress-activated protein kinases [122], as well as
disruption of other types of cell signaling [123], repair
processes [124], protein synthesis [125–127], and even
mitochondrial energy production [128]. GSH depletion
also causes other cell structure alterations, including
increased DNA damage [129], loss of junctional and cy-
toskeletal integrity [130,131], and abnormal cellular bodies
[132–134]. We would hypothesize that these cellular
effects would be seen in the RACP cells of CF patients.

Impaired mucolysis

Extracellular GSH deficiency impairs mucolysis, as
GSH facilitates cleavage of disulfide bonds in mucus, in
much the same type of mucokinetic activity demon-
strated by NAC [135]. Increased viscoelasticity of mucus
further inhibits ciliary beating, and also allows for in-
creased opportunity for bacterial colonization of the lung
[136–140]. Interestingly, GSH depletion has also been
shown to provoke mucin secretion by tracheal epithelial
cells [141], and increased NFkB due to GSH deficiency
stimulates mucus oversecretion by epithelial cells in the
presence ofPseudomonas aeruginosa[142]. However,
since these epithelial cells are generally not RACP cells,
these observations are only interesting if it is the case that
despite their normal levels of total glutathione, CF epi-
thelial cells have a significantly decreased GSH:GSSG

ratio. Given the high amount of oxidant stress in CF, in
part due to chronic and progressive extracellular GSH
deficit caused by the CFTR mutation, this alteration
might occur. If so, then it is also interesting to note that
GSH deficit also precludes IFN-g inhibition of Na1 and
fluid absorption [143,144], and perhaps NO regulation of
ENaC, as well [145,146]. As noted above, oxidative
stress due to GSH depletion leads to an increase in free
NE, which also stimulates mucus secretion [147].

Abnormal immune response

Though GSH is well known for its antioxidant prop-
erties, and somewhat less well known for its mucolytic
capability, it is not as widely known for the key role it
plays in immune system regulation. Because RACP cells
include leukocytes and lymphocytes, the literature in this
area should be pertinent to the case of CF. The following
discussion is not comprehensive, but rather serves to
outline the broad parameters of the topic.

First, as noted in the introduction, the redox status of
GSH is the primary mechanism by which this regulation
takes place. GSH deficiency in immune system cells
(which are RACP cells) triggers inflammation, and
chronic GSH deficiency in these cells leads to chronic
and exaggerated inflammation. Cellular GSH deficiency
is related directly to increased transcription of NFkB
[148–155]. NFkB codes for the inflammatory cytokines,
and a deficit of either the water-soluble or fat-soluble
antioxidants increases NFkB activity, which is a critical
early event in the pathogenesis of many lung diseases
[156]. This mechanism is demonstrated in HIV-infected
macrophages, wherein there is increased activity of
NFkB due to decreased GSH synthesis. Consequently,
there is a progressive increase of inflammatory cytokines
as the disease progresses (and as GSH continues to be
diminished). Increasing the redox potential of infected
macrophages correlates with a decrease in inflammatory
cytokines, as well as a decrease in HIV replication [157–
159]. The concept of cellular redox potential is particu-
larly germane to immune cell function due to its influ-
ence on NFkB activity. Diseases that have a chronic
inflammatory component, whether affecting a single or-
gan (e.g., hepatitis), or as systemic inflammation (as in
AIDS), will manifest GSH deficiency either in the af-
fected organ or systemically, respectively. These deficits
can occur due to insufficient GSH synthesis or transport,
or consumption in pathological oxidative reactions that
outpaces replenishment.

Accordingly, the cytokine profile of GSH deficiency
includes elevated levels of AP-1 [151,152,154,155],
TNF-a and its by-products [150,160,161–163], IL-1-
induced MCP-1 [151,164], and IL-8 [154,160,165]. GSH
also appears to exert some regulation over HIF-1a [153],
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regulates chemokine receptor expression [166], and ap-
pears to increase levels of IL-1a [167]. This cytokine
profile leads to increased recruitment of neutrophils and
macrophages [168,169], and, in general such a profile
would produce chronic inflammation even in the absence
of pathogen challenge.

However, under conditions of chronic GSH defi-
ciency in RACP cells and in the extracellular milieu, the
inflammation is for naught. GSH deficiency in neutro-
phils and macrophages decreases effectiveness of bacte-
ricidal action of these cells. There are several reasons for
this: first, GSH deficiency in such cells produces prema-
ture apoptosis, both because GSH depletion is a neces-
sary step in apoptosis, perhaps because GSH depletion is
associated with the activation of sphingomyelinases
[170], and because GSH deficiency allows for greater
oxidant damage to these cells [49,171–182]. Second,
GSH deficiency causes neutrophils to suffer microtubule
damage, impaired release of lysosomal enzymes, de-
pressed leukotaxis, and in general, decreased phagocy-
tosis [49,183–185]. Third, premature apoptosis in a con-
text of enhanced recruitment of neutrophils by cytokines
causes increased spillage of toxic compounds and DNA
into the extracellular milieu [186]. Such spillage pro-
motes increased viscosity of secretions, increased oxi-
dant and elastase burden, the establishment of a positive
feedback loop to IL-8 production and further neutrophil
recruitment, and, in general, an increased opportunity for
pathogenic lung colonization [186]. Fourth, GSH ap-
pears to regulate the oxidative burst of neutrophils, with
GSH deficiency leading to decreased burst activity [187].
The interplay of GSH and NO in bactericidal action will
be discussed in a separate section below.

The immune response also becomes abnormal under
conditions of chronic GSH deficiency because of an
alteration of Th1/Th2 response. Depletion of GSH in
antigen-presenting cells (APC, also a RACP cell) de-
creases interferon-g (IFN-g) and enhances Th2-associ-
ated humoral immunity responses at the expense of cell-
mediated immune response [143,188,189]. This alters
the ability of APC to function normally, in part because
GSH reduction of disulfide bonds is necessary for pro-
teolysis of the antigen [143]. This interference of signal-
ing between the APC and the T cells prevents proper
T-cell response [143,190,191]. Other cell signaling in-
volving T cells may also be adversely affected [192]. As
noted previously, IFN-g signaling is dysregulated by
GSH depletion [144]. Extreme depletion of GSH in APC
as well as in T cells has been shown to diminish both
T-cell proliferation and IL-12 production, as well as
increasing apoptosis of T cells [143,191,193–203]. B cell
and fibroblast proliferation also appears related to intra-
cellular GSH level [204,205]. Activation and cytolytic
activity of T cells and B cells is decreased with GSH

depletion [189,206–210]. Again, this appears to be the
result of cell structure abnormalities due to GSH deple-
tion [211]. Movement towards a Th2 response has been
associated with a negative outcome in many diseases
[212–215].

Decreased nitric oxide production and availability

NO, an important factor in cell signaling, pathogen
killing, and smooth muscle relaxation, is profoundly
affected by GSH system function. In the extracellular
compartment, GSH deficiency will result in less extra-
cellularly produced GSNO (S-nitrosoglutathione, which
is produced both extracellularly and intracellularly), an
important source of NO. In RACP cells (and perhaps
non-RACP cells if depressed intracellular GSH:GSSG
ratios were present in them), a variety of noteworthy
consequences result. GSH deficiency has been shown to
decrease iNOS expression and decrease levels of cellu-
larly produced GSNO, which two phenomena may be
interrelated [216–221]. NO and GSH appear to regulate
cell energy metabolism [222,223], and NO stimulates
enhanced expression ofg-glutamylcysteine synthetase,
the rate-limiting enzyme for GSH synthesis, apparently
to counteract NO cytotoxicity [224–227]. GSNO is not
only a reservoir of readily accessible NO, it is also a
reservoir of easily accessible GSH, which becomes im-
portant under conditions in which cells become depleted
of GSH through cytoprotective activities. Indeed, there
appears to be a balance between GSH and GSNO, which
under conditions of GSH depletion, favors cleavage of
GSNO [228]. The balance appears to determine whether
NO will be cytotoxic or cytoprotective [229–231]. De-
pletion of GSH markedly increases cell susceptibility to
the harmful effects of peroxynitrite (ONOO2), leading to
cytostasis and apoptosis [232–239]. In addition, under
conditions of GSH depletion and resulting lower levels
of GSNO (which is formed both intracellularly and ex-
tracellularly) and oxygen radical release from inflamma-
tory cells, NO is readily transformed into nitrites and
nitrates [240,241]. ONOO2 has also been shown to
inactivate glutathione reductase [115]. As NO is impor-
tant in bactericidal action, lowered levels of NO signif-
icantly depress such action, leading to increased infec-
tion with organisms such asPseudomonas aeruginosa
[145]. GSH depletion reduces smooth muscle relaxation
in response to NO, producing in the lung a tendency
towards generalized bronchoconstriction [242,243]. NO
also appears to regulate both the CFTR channel and a
non-CFTR Cl2 channel, and a decrease in NO leads to
a decrease in conductance [244,245]. NO also appears to
regulate ENaC sodium absorption via cGMP, with de-
creased NO leading to loss of the signal to downregulate
sodium absorption [145,146]. Trans-epithelial potential
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difference, being regulated in part by sodium absorption,
is thus seen to be regulated by iNOS, with decreased
iNOS leading to increased potential difference [145].
Last, ciliary beat function is regulated by NO, with deple-
tion of NO leading to impaired ciliary function [246].

OBSERVATION: THE LIST OF EFFECTS OF GSH

DEFICIENCY RESEMBLES THE LIST OF KEY

PATHOLOGICAL EVENTS IN CF

For those familiar with CF pathology, the previous
inventory of known effects of GSH deficiency should

have seemed very familiar. For those unfamiliar with CF,
we present Table 1, which identifies which known asso-
ciations of GSH deficiency have also been found to be
present in CF disease. We are not suggesting that GSH
deficiency, but not other negative effects of CFTR mu-
tation, produce each of the following pathological con-
sequences. (To give but one example, pancreatic insuf-
ficiency in most CF patients leads to suboptimal levels of
vitamins E and A [247], which are also important for
antioxidant protection, though routine supplementation
with water-miscible forms of these vitamins does signif-

Table 1. Known Associations of GSH Deficiency Correlated with CF Pathology

Known associations of GSH deficiency Present in cystic fibrosis pathology?

Oxidant damage to organs and tissues Yes [248,249]
Oxidant damage to lungs Yes [248]
Oxidant damage to liver Assumed with cirrhosis [250,251]
Reduced bile flow in liver Yes [252]
Oxidant damage to pancreas Assumed with fibrosis [251,253]
Development of diabetes Yes, about 20% [251,254]
Oxidant damage to intestines Assumed with inflammation [255,256]
Impaired growth Yes [254]
Development of cachexia Yes [257]
Development of arthritis Yes, about 20% [258,259]
Peripheral nerve dysfunction Yes [260]
Oxidant damage to myocardium Predisposition [261]

Greater lipid peroxidation Yes [249,262]; especially damaging due to increased AA in CF
[97], see also [98]

Diminished antioxidant shield Yes [263]
Inactivation of antiprotease system Yes [264]

Increased elastase damage Yes [100, 264–267]
Increased mucus secretion Yes [254]
Acquired immune suppression Yes [268]

Inhibition of ciliary beat function Conflicting studies
Decreased lung surfactant Yes [269]
Respiratory and skeletal muscle fatigue No respiratory muscle fatigue; skeletal muscle fatigue demonstrated

[270,271]
Development of asthma and generalized bronchoconstriction Yes, 10–40% of cases [254]
Increased production of chloramines Yes [272, 273]
Decrease epithelial integrity Yes [254,274,275]
Increased adhesion of pathogens Yes [276]
Cell structure abnormalities Yes [274,275,277–279]
Increased viscoelasticity of mucus Yes [254]

Increased DNA load from increased neutrophil count Yes, 40% of content [254]
Decreased mucolysis of disulfide bonds in mucus Assumed
Increased sodium and fluid absorption, with decreased periciliary
fluid volume/hydration

Yes [254]

Altered cytokine profile Yes
Increased NFk-b Yes [10,11,280]
Increased AP-1 Yes [11]
Increased TNF-a Yes [9,257,281]
Increased MCP-1 Unknown
Increased IL-8 Yes [3,4,7–9, 280, 282, 283]
Increased IL-1a Yes [284,285]

Increased recruitment of neutrophils Yes [3,7,265,286]
Decreased effectiveness of neutrophils Yes [282,287–289]
Shift towards Th2 immune response, with concomitant decrease in

IFN-gamma
Yes [290–292]

Abnormalities of T and B cell system, with decreased cytotoxicity Yes [292–301]
Decreased iNOS expression Yes [145,302–304]
Decreased GSNO levels Yes [305]
Decreased NO Exhaled NO lower [19,22–27]
Increased levels of nitrites and nitrates Yes [27,306–308]; see also [309] regarding peroxynitrite/neutrophil

relation]
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icantly raise these levels.) Nevertheless, we argue that
GSH deficiency may play an important role—sometimes
causative, other times aggravating—in the development
of these consequences, especially as there is no provision
for correction of this deficiency in current CF treatment
guidelines.

HYPOTHESIS: GSH DEFICIENCY IN CF IS A PRIMARY,

NOT A SECONDARY EFFECT OF CFTR MUTATION,

AND PLAYS A CRITICAL ROLE IN THE

PATHOGENESIS OF CF

A question has arisen over whether GSH deficiency in
CF is merely a by-product of increased oxidant stress and
pathogen burden [313]. Recent research allows us to
assert that GSH deficiency in CF, though it may be
aggravated over time by higher oxidant stress in CF, is
nevertheless caused in the first place by the CFTR mu-
tation itself. For this hypothesis to be valid, certain
empirical phenomena should be present. We will exam-
ine two such expected phenomena and assess the evi-
dence confirming the presence of each.

CF cells without redundant anion transport channels
at the apical surface will have markedly impaired GSH
efflux

This impairment will lead to extracellular GSH defi-
ciency, which should start out small and be progressive
over time. To underscore that the CFTR mutation is at
work, all other components of the GSH system should be
functional in CF. Evidence:

Impaired GSH efflux from non-RACP CF cells. Linsdell
and Hanrahan found that the CFTR effluxes GSH [1].
When the CFTR channel is chemically clamped, GSH
efflux ceases in those cells without redundant anion
transporter channels. Gao et al. replicated this finding
using CF epithelial cells [2]. Gao and colleagues also
noted that CF epithelial cells contain normal levels of
total glutathione. It would be interesting to ascertain
GSH:GSSG ratio in these cells as well, given the previ-
ous discussion. It should be noted that it is currently very
difficult to ascertain cellular GSH:GSSG ratios, though it
can be done [310]. (As a tangent, it may be that the
normal level of total glutathione in non-RACP cells
explains the puzzling lack of apoptosis in CF epithelial
cells infected with PA [17], as GSH depletion is a crucial
step in cellular apoptosis, as we have previously seen.
Decreased cellular ability to be depleted of GSH may
lead to decreased ability to appropriately undergo apo-
ptosis.) Normal lung epithelial cells do express a redun-
dant anion channel, MRP1, at the basolateral, but not at

the apical membrane [311]. MRP2/cMOAT is not
present in lung epithelial cells [312]. Thus, absent a
redundant anion channel at the apical surface, defective
or absent CFTR would result in impaired GSH efflux
from CF lung epithelial cells, as found by Gao et al.

Progressive extracellular GSH deficiency in CF. Hull et
al. demonstrate that infants and young children with CF
who are not infected have approximately the same levels
of ELF glutathione as non-CF controls, though infants
and children with CF who are infected have somewhat
reduced ELF glutathione, which reduction does not reach
statistical significance [313]. However, Hull et al. mea-
sured total glutathione, and it would be interesting to
note whether the GSH:GSSG ratio was altered in either
group. This ratio is somewhat easier to measure in ex-
tracellular fluid. A decrease in this ratio would be the first
sign that the CFTR mutation-derived abnormal glutathi-
one transport present in CF had begun to manifest itself.
Tirouvanziam hypothesizes that the initial alteration in
this ratio in CF infants would be precipitated by the high
oxidative stress of birth [186,314]. As noted previously,
several researchers have found upregulated markers of
inflammation even in uninfected CF infants [3–6], which
would be concordant with a birth-related alteration in the
GSH:GSSG ratio. For CF patients beyond infancy,
Brown et al. determine that plasma sulfhydryls signifi-
cantly decrease with age in CF persons [47]. Examining
CF patients ranging in age from 2–20 years, Brown et al.
find that plotting age by plasma sulfhydryl level yields an
r of 20.44, with p , .05. FEV1 displayed a strong
correlation with plasma sylfhydryl level in these CF
patients, with anr of 0.52,p , .005. Finally, Roum et al.
examine adult CF patients and demonstrate a profound
extracellular deficit of GSH, with ELF GSH levels
5–10% of normal levels, GSH plasma levels about 50%
of normal, and a dramatically decreased GSH:GSSG
ratio in both fluids (approximately 1:1, in contrast to
normal ranges of 9–200:1) [48]. Roum et al. calculate
mean ELF glutathione in CF persons and determine it to
be approximately 78mM, but a careful examination of
the data show there is an extreme outlier in the data
skewing the mean. Median level is a more appropriate
statistic in such a situation, and estimation reveals a
median of approximately 40mM. Normal ELF glutathi-
one levels range from 250–800mM, with a mean of
approximately 429mM for patients not under oxidative
stress, and a mean of almost 800mM for patients under
oxidative stress. Though van der Vliet et al. [315] have
used a new methodology for glutathione analysis show-
ing a lower normal level of glutathione in the ELF of
non-CF persons, we are confident that when they exam-
ine glutathione levels in the ELF of CF persons, the
deficit percentage Roum et al. found will remain the
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same. In conclusion, the data available appear to docu-
ment a progressive extracellular deficit of GSH in CF
persons.

All other components of GSH system present and normal.
GSH synthesis in CF cells has been shown to be normal,
and presence of a functioning glutathione enzyme sys-
tem, including at least normal, or even elevated, levels of
glutathione peroxidase, glutathione reductase,g-glu-
tamyl transpeptidase, andg-glutamylcysteine transferase
(in the absence of other genetic mutation involving these
enzymes, such as the GSTM1-null genotype) has been
demonstrated [48,249,313,316,317]. Thus, unlike dis-
eases such as AIDS, where glutathione system dysfunc-
tion stems from decreased synthesis of cellular GSH,
GSH deficiency in CF does not derive from abnormal
synthesis of GSH. And unlike other genetic diseases of
the glutathione system, the redox, transferase, and recy-
cling systems are intact.

CF cells expressing MRP1 or MRP2 (redundant anion
channels that would allow the efflux of GSH even in the
context of CFTR channel mutation, i.e., RACP cells),
may not be able to maintain normal levels of GSH over
time in the context of progressive extracellular deficit of
GSH, and may eventually enter a state of chronic deple-
tion of cellular GSH, which would, at a minimum, be
manifest in an abnormally low GSH:GSSG ratio. Levels
of total glutathione may even drop below normal with
advanced disease. Generally speaking, immune system
cells express not only CFTR [318–320], but also MRP1,
and thus would belong to this category [110,321,322].
Indeed, MRP1 has been shown to be upregulated in CF
erythrocytes, and thus MRP-type transporters could also
be expected to be upregulated in lymphocytes, leuko-
cytes, and hepatocytes, which may account for increased
drug clearance in CF patients [323]. (Though one study
has found a lack of GS-X pump activity and expression
in lymphocytes [324], other studies have found signifi-
cant MRP expression therein [325].) Given that conju-
gates of GSH are the substrate for these pumps, it is
possible that the severely depressed extracellular levels
of GSH coupled with increased expression of MRP1 may
together create a situation in which greater cellular efflux
of GSH occurs. Indeed, in addition to GSH conjugates,
MRP1 and MRP2 have also been shown to efflux GSH
itself [326]. From what we now know about abnormal
GSH transport caused by CFTR mutation, RACP cells
may be some of the few cells able to respond to such a
signal in the CF case [327,328]. Such efflux might lead
to chronic depression of GSH levels within these cells,
resulting in a diminished GSH:GSSG ratio and perhaps,
with advanced disease, decreased levels of total glutathi-
one. (A complicating factor is that peroxides have been
shown to inhibit the activities of GS-X pumps through

direct oxidant damage, and peroxide formation is greatly
increased in CF [329].) Chronic GSH depletion in im-
mune system cells leads, as we have seen, to chronic and
exaggerated inflammation coupled, paradoxically, with
immunosuppression: a paradox that is a hallmark of CF
pathology.

The evidence here is more sparse. Increasedg-glu-
tamylcysteine transferase (g-GCT) has been noted in the
ELF of CF persons [313,317], indicating increased cel-
lular activity to create GSH conjugates. Upregulation of
MRP1 in CF erythrocytes has already been mentioned
[323], denoting increased efflux of these conjugates.
Increasedg-glutamyl transpeptidase activity in CF has
also been observed, indicating increased cellular activity
to cleave extracellular GSH and GSSG into components
for cellular GSH resynthesis. This significantly increased
level of g-GT was found even in infants [313]. An
increase in glutathione reductase (GR) levels has also
been noted in CF [249,317], pointing perhaps to an
increase of GSSG in the cytosol, and thus also an alter-
ation in GSH:GSSG ratio. Studies have shown a dramat-
ically decreased extracellular GSH:GSSG ratio in CF
ELF, as noted above [48]. Are such alterations also
present specifically in the immune system cells of CF
persons? There is only one study of glutathione levels in
CF RACP cells, and it does not report the GSH:GSSG
ratio per se. Lands and colleagues found that total glu-
tathione levels of the peripheral blood lymphocytes of
CF persons, though not statistically different from con-
trols, were, in general, somewhat depressed, especially in
subjects with poor nutritional status [330]. This is prima
facie evidence that total glutathione levels of immune
system cells in CF persons can be depressed, though
clearly more studies are needed on this topic. First, as
noted above, it is currently under dispute to what degree
lymphocytes manifest GS-X pump activity [325,331].
More to the point would be a study of leukocytes, but no
such study now exists. Second, cellular GSH:GSSG ra-
tios would be very important to know, if they could be
obtained. For example, Lands et al. [330] find compar-
atively higher total glutathione in the lymphocytes of
patients with the worst FEV1 scores than in those with
the best scores. But in the absence of knowing the
GSH:GSSG ratio, this finding is hard to interpret. Nor-
mal GSH:GSSG ratio is anywhere from 9:1 to 200:1
depending on compartment [34], but Roum et al. found
that ratio in CF ELF to be reduced to approximately 1:1
[48]. If this depression was in fact both systemic and
progressive in CF RACP cells, the signaling initiated by
a chronic and significant alteration in GSH:GSSG ratio
within immune system cells would certainly help explain
the paradoxical abnormalities of CF immune response.

However, the mechanism of this alteration in GSH:
GSSG ratio in CF immune system cells would still need
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further elucidation, even if confirmed. Several possibil-
ities exist. First, might it be a natural effect of high
oxidant stress in CF? It might, but in normal persons, the
activities of glutathione reductase,g-GCT, g-GT, and
g-GCS (g-glutamylcysteine synthetase) are sufficient to
normalize that ratio. As we have seen, all these enzy-
matic components of the GSH system are present in at
least normal, and usually elevated levels in CF. Second,
might it be that because the immune system cells nor-
mally draw upon extracellular stores of GSH to replenish
and resynthesize their own cellular stores of GSH, which
are severely depleted during the course of bactericidal
activity by these cells [49,112,113,183,185,272], the
lower-than-normal levels of ELF GSH in CF then com-
promise these cells’ ability to maintain appropriate in-
tracellular levels of GSH? Third, might the redundant
anion channels of these cells allow for efflux of GSH,
and might that efflux be somehow promoted by the
extracellular redox ratio? The extracellular redox state
has been shown to affect GSH efflux, but one study
shows an oxidized state to be associated with inhibition
of GSH efflux in pneumocytes where the channel of
GSH efflux is the CFTR [332], while another shows
increased GSH efflux from human lung epithelial cells
under oxidative stress [333]. Only further research will
clarify the mechanism(s) involved.

PUZZLES SOLVED

We do not claim that glutathione system dysfunction
is the only initiator of pathology in CF. Neither do we

suggest that such dysfunction is the primary cause of CF
pathology. We merely assert that it is an important part
of the pathological picture in CF, sometimes causing
certain pathological effects, sometimes aggravating pa-
thology caused by other factors. A diagram summarizing
this hypothesis can be found in Fig. 2. In the absence of
all desirable empirical evidence, strong warrant for a
theory can be gauged by the number of interesting puz-
zles solved by it. Listed below are the puzzles of CF
pathology that are addressed by the theory of CFTR-
derived GSH deficiency in CF.

1. Decreased exhaled NO in CF can be explained.
2. Constitutive and progressive inflammation in the ab-

sence of infection can be explained.
3. Lack of bactericidal action despite exaggerated in-

flammation can be explained.
4. Lack of apoptosis by PA-infected epithelial cells can

be explained.
5. Greater viscosity of mucus in CF gains several addi-

tional explanations, including lack of GSH mucolytic
action and premature neutrophil apoptosis due to
GSH deficiency, among others.

6. The overall outline of CF pathology can, in general,
be correctly predicted from the overall outline of the
effects of GSH deficiency in non-CF cases.

THERAPEUTIC IMPLICATIONS

Should this theoretical framework be validated by
further empirical research, therapeutic implications

Fig. 2. Abnormal GSH transport in cystic fibrosis.
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present themselves. These therapies would not be cures,
as only genetic therapy holds that promise, and these
therapies could not substitute for other useful pharmaco-
logic therapies, such as DHA supplementation [97].
Though our focus here is on exogenous GSH augmenta-
tion, it should be noted that any intervention that in-
creases anion transport would also positively affect the
GSH system situation in CF. For example, Forman and
colleagues use a novel synthesized peptide to increase
GSH and other anion transport, and this might also be a
useful therapeutic approach [54]. Lenoir and his col-
leagues have experimented with the use of colchicine in
CF to coax MRP expression at the apical surface of lung
epithelia, which, if it could be accomplished, would have
great therapeutic potential [334]. However, let us explore
the possibility of direct exogenous modulation of GSH
levels here.

First, cysteine supplementation has a role in CF care.
This may help increase GSH levels in RACP cells. Given
that cysteine is the rate-limiting amino acid for GSH
production, provision of additional cysteine, usually
through oral ingestion of a cysteine donor such as NAC,
allows for increased cellular synthesis [149,335,336]. A
case report of cysteine supplementation in a COPD pa-
tient notes dramatic improvement [337], and COPD is
another pulmonary disease with generally depressed
GSH levels. For CF patients whose genotypes afford
them greater CFTR expression, increased GSH synthesis
may be a fairly effective route of GSH augmentation,
because greater GSH efflux from non-RACP epithelia in
such genotypes is possible. Such milder mutations not
only experience a slower decline in pulmonary function
and greater life expectancy, but also suffer less fre-
quently from CF-related liver cirrhosis or diabetes [338,
339]. Greater efflux of GSH may be part of the expla-
nation for this. Also, other nutrients involved in the
proper functioning of the GSH system, such as B6,
magnesium, selenium, ascorbate, and E, should be ex-
amined for adequacy.

However, even more important in our opinion would
be rectification of extracellular GSH levels by augmen-
tation with GSH itself. Cysteine by itself will not pro-
duce a more normal extracellular GSH level in pancre-
atic insufficient CF persons (i.e., those not having mild
mutuations) because the CFTR defect will severely di-
minish GSH efflux from non-RACP CF cells, including
lung epithelia. In addition to rectifying the extracellular
deficit, exogenous GSH will also provide more substrate
for g-GT (which is significantly increased in CF [313]),
which activity would increase GSH levels in any cells
that were depleted of it. Furthermore, epithelial cells are
capable of taking up GSH intact from the extracellular
milieu [34]. Before turning the specific routes of exoge-

nous GSH delivery, a few parameters should be men-
tioned.

First, unless some type of time-release form of GSH
could be developed, GSH would have to be administered
about every 3–4 waking hours. In previous studies, ele-
vation of ELF GSH through provision of exogenous
GSH results in an initial peak increase at 30 min after
dosage (when 600 mg are inhaled), followed by a gradual
decline until baseline levels are reached after 2–4 h
[340–347]. Period of elevation was also dose-dependent,
as super-physiologic multigram doses have been found
to extend that duration significantly [340,345]. Second,
use of GSH-stripping substances, such as acetamino-
phen, alcohol, codeine, or morphine would have to be
avoided by the patient. Third, as a vasodilator, GSH
therapy might be contraindicated in CF patients prone to
hemoptysis.

Fourth, GSH therapy might also be contradindicated
in patients culturingBurkholderia cepacia, since GSH
serves to decrease inflammation. When culturingB. ce-
pacia, exuberant inflammation may be necessary to pre-
vent fatal cepacia syndrome. The issue of whether use of
an antioxidant such as GSH might serve to increase
infection in CF patients is one that should be addressed
at this point. Oxidant signaling is very important in
immune response, and also in wound healing. It would
not only be impossible, but it would be harmful to
eliminate all oxidant signaling. However, in CF the an-
tioxidant shield has been overwhelmed, in part, at least,
because of abnormal GSH transport due to CFTR muta-
tion. GSH levels are 5–20% of that found in a normal
person. Pushing that percentage up above 50% of normal
would not constitute introducing excessive amounts of
antioxidants. Too high of an oxidant burden cripples
immune system cells, as we have seen. By toning down,
but not eliminating oxidant signaling, the immune sys-
tem in CF should be made more effective [287]. In the
only in vivo trial of GSH augmentation in CF persons, no
trial subject developed any infectious symptoms or signs
[347]. In vitro studies show that extracellular concentra-
tions of GSH of up to at least 300mM do not inhibit
bactericidal or phagocytic activity of neutrophils [327,
328]. Levels higher than that were not studied, but given
that normal ELF levels range between 400 and 800mM,
it is likely that inhibition does not occur at these higher
levels, either, though this question can only be answered
by further empirical investigation. Nevertheless, where
potentially deadlyB. cepaciais involved, more labora-
tory study is needed before GSH use can be contem-
plated.

Last, the younger the age at which the therapy is
begun, the more likely that the CF patient will experience
the desired effects of the therapy. Thus, children infected
only with, for example,Staph. aureus, may find it pos-
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sible to eradicate that bacteria using this therapy. How-
ever, older CF patients with greater lung damage cultur-
ing, for example, mucoidPseudomonas aeruginosa, may
not see similar results. Modes of GSH augmentation will
now be discussed.

Intravenous administration

Intravenous GSH, with the GSH as a sodium salt, has
been used to treat chemical or radiation poisoning, as
well as to treat diabetes and Parkinson’s disease [73,
348]. Intravenous GSH has been shown to raise not only
blood levels of GSH, but also ELF GSH [340].

Oral administration

The oral ingestion of GSH has often been overlooked
as an effective route of augmentation of extracellular
GSH for a number of reasons. First, the unique CFTR-
derived problem of GSH efflux is not present in other
diseases, so simple provision of additional cysteine is
sufficient to increase GSH levels in those other diseases.
The second reason centers around the dispute over
whether GSH is cleaved or destroyed in the digestive
tract, or whether GSH can be taken up intact from the
duodenum and jejunum and transported into the blood-
stream. Fortunately, the number and sophistication of
recent research articles demonstrating that GSH is taken
up intact from the small intestine outweigh those denying
that such uptake occurs [324,349–352]. These studies
also show dose-dependent elevation of circulatory GSH,
and tissue GSH, including the lung [324]. Remember
that circulatory elevation of GSH does in fact lead to
ELF elevation of GSH [340].

Inhalation

There have been eight in vivo studies of inhaled GSH,
one a murine study and the other seven human studies
[340–347]. Human subjects ranged in age from 4 years
old on up to mature adulthood. Only one small in vivo
study of seven subjects has specifically examined CF
patients [347]. This study found that certain inflamma-
tory markers significantly decreased after 3 d use of
inhaled reduced glutathione. In addition, one in vitro
study using CF sputum found that the addition of GSH
caused the reduction of baseline O2

2 by approximately
90%, and reduction of PMN-induced burden by approx-
imately 46% [353]. These two studies provide some
encouragement that should a larger in vivo trial on CF
patients be performed, at least some of the desired and
predicted effects would be forthcoming.

Six of the seven studies used free acid GSH in an

isotonic saline solution (150 mg/ml). One study used
pH-adjusted GSH sodium salt in isotonic saline solution
[345]. All studies used pharmaceutical grade GSH (min-
imum 98% pure).

Bronchoconstriction was noted in one study [344],
which was eliminated by the prior inhalation of salbute-
mol. Another approach to the bronchoconstriction prob-
lem is the use of pH-adjusted GSH sodium salt. Free acid
solution GSH has a pH of approximately 2.7. Under-
standing that inhalation of low pH substances can induce
lung irritation [354], the use of the sodium salt is worthy
of investigation. In one in vivo study, a 2.4 g dose of
inhaled GSH could be tolerated when the pH was ad-
justed to 7.0 by use of the sodium salt [345]. Other
possibilities for modification include delivery by lipo-
somes to lengthen duration of elevation [355–357], as
well as the inhalation of a slower release crystalline form
[340]. Maintenance of isotonicity of the solution is no
doubt desirable as well [358]. No other safety issues
surfaced in these studies. Oxidation of inhaled GSH to
GSSG should occur, and indeed was found [347], but
since all other components of GSH recycling remain
intact in CF, with only GSH efflux from non-RACP cells
affected, the extracellular GSH:GSSG ratio should nor-
malize over time with consistent use becauseg-glutamyl
transpeptidase (g-GT) will break down extracellular
GSSG at the cell surface, recovering the component
amino acids for use in cellular resynthesis of GSH [34,
135]. As we have noted,g-GT is significantly increased
in CF persons [313].

CONCLUSION

New research suggests that the CFTR defect associ-
ated with cystic fibrosis also causes abnormal GSH trans-
port in non-RACP cells. Thus, the genetically defective
CFTR appears to establish the foundation of a progres-
sive GSH deficiency in the extracellular milieu and in
RACP cells, including immune system cells. A dimin-
ished extracellular antioxidant shield, increased mucus
viscoelasticity, and exaggerated inflammation coupled
with ineffective immune response result. As inflamma-
tion becomes further amplified during the course of the
disease, there is a progressive oxidative burden, which
would cause further decrements in antioxidant defenses.
There are no opportunities for the CF host to reestablish
normal response without exogenous intervention, such as
GSH augmentation.

The linkage between the genetics and the pathology of
CF can thus be more clearly seen, as the known associ-
ations of GSH deficiency in these areas correlate well
with known CF pathology, providing at least partial
answers to several long-standing puzzles of CF pathol-
ogy. Though abnormal GSH transport is not the sole or
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perhaps even the primary cause of CF pathology, it plays
an important role—a sometimes causative, sometimes
aggravating role—that bears closer investigation. Theo-
retically, shifting extracellular GSH levels towards nor-
mal should provide significant ameliorative results, if
this hypothesis is correct. Though more laboratory re-
search is certainly needed to complete our understanding
of the role of abnormal GSH transport in CF disease, it is
also reasonable that clinical trials be contemplated, as
well. Though not a cure for CF as the underlying defect
remains, and though not a panacea for all CF-related ills
for some of those ills are not caused by GSH deficiency,
a therapy that appears safe, inexpensive, and has the
potential to be significantly ameliorative should not be
left unexplored for the CF patient who seldom sees the
fourth decade of life.
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